

Journal of Alloys and Compounds 408-412 (2006) 894-897

www.elsevier.com/locate/jallcom

Luminescence of NaGdF₄:Tb³⁺, Eu³⁺ under vacuum ultraviolet excitation

T. Hirai^{a,*}, N. Ohno^a, S. Hashimoto^b, S. Sakuragi^c

^a Academic Frontier Promotion Center, Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530, Japan

^b Department of Environmental Sciences, Faculty of Science, Osaka Women's University, 2-1 Daisen-cho, Sakai, Osaka 590-0035, Japan ^c Union Materials Inc., Tone-machi, Kitasouma, Ibaragi 320-1602, Japan

omon indertais mei, 10ne maeni, indisouma, 10dragi 520-1002, sapar

Received 2 August 2004; received in revised form 16 December 2004; accepted 13 January 2005 Available online 6 June 2005

Abstract

Luminescence and excitation spectra of NaGdF₄:Tb³⁺, Eu³⁺ have been investigated. The luminescence spectrum consists of the luminescence lines originating from the f–f transition of Tb³⁺ and Eu³⁺ ions. In the excitation spectrum for the luminescence line of Eu³⁺ ions at 614 nm, excitation bands arising from the f–d transition of Tb³⁺ ions are observed in the vacuum ultraviolet (VUV) spectral region ranging from 160 to 210 nm. It is found that, by replacing Gd³⁺ with Y³⁺, the intensities of the luminescence lines from Eu³⁺ ions weaken compared to those from Tb³⁺ ions. The luminescence of Eu³⁺ ions is found to weaken with decreasing temperature. On the basis of the present results, we discuss the energy transfer process in NaGdF₄:Tb³⁺, Eu³⁺ under the VUV excitation. © 2005 Elsevier B.V. All rights reserved.

PACS: 78.55.-m; 78.55.Hx

Keywords: Energy transfer; Vacuum ultraviolet; Fluorides; Rare-earth ions

1. Introduction

Rare-earth ions doped fluoride phosphors have been actively studied with the aim of developing new phosphors suitable for use in xenon dimer (Xe₂) discharge fluorescent lamps. Since Xe₂ discharge generates vacuum ultraviolet (VUV) light peaking at \sim 172 nm, the phosphors for white light fluorescent lamps need to convert the VUV light efficiently into blue, green and red light.

According to [1], LiGdF₄:Eu³⁺ absorbs the VUV light (~172 nm) due to the 4f⁷ \rightarrow 4f⁷ (f–f) transition in Gd³⁺ ions, and yields red light (614 nm) arising from the f–f transition in Eu³⁺ with high conversion efficiency, as compared to LiYF₄:Eu³⁺. When the Gd³⁺ ion in LiGdF₄:Eu³⁺ is excited by one VUV photon, two red photons can be emitted by the Eu³⁺ ions through a two-step energy transfer from Gd³⁺ to Eu³⁺ ions. Such a conversion process is called "quantum cut-

fax: +81 72 825 4684.

E-mail address: t-hirai@isc.osakac.ac.jp (T. Hirai).

ting" [1]. However, the absorption due to the dipole-forbidden f-f transition is weak, so that the conversion of the VUV light through the absorption by Gd^{3+} ions is inefficient.

A possible way out of the problem is introducing of sensitizers that strongly absorb the VUV light, and efficiently give the absorbed energy to activators yielding the visible luminescence. It has been found that Tb^{3+} ions in LiYF₄ strongly absorb the VUV light ranging from 170 to 220 nm due to the dipole-allowed $4f^8 \rightarrow 4f^7$ 5d (f–d) transition [2]. This implies that Tb^{3+} ions act as sensitizers suitable for the excitation of VUV light generated from Xe₂ discharge. We expect that NaGdF₄:Tb³⁺, Eu³⁺ efficiently absorbs the VUV light in Tb³⁺ ions and gives the absorbed energy to Eu³⁺ ions.

In this study, we have investigated luminescence and excitation spectra of NaGdF₄:Tb³⁺, Eu³⁺. The luminescence spectrum consists of the luminescence lines originating from the f–f transition of Eu³⁺ and Tb³⁺ ions. In the excitation spectrum for the luminescence line of Eu³⁺ ions at 614 nm, there appear excitation bands arising from the f–d transition of Tb³⁺ ions in the VUV spectral region ranging from 160 to 210 nm. By replacing Gd³⁺ with Y³⁺, the luminescence lines

^{*} Corresponding author. Tel.: +81 72 824 1131x2261;

 $^{0925\}text{-}8388/\$$ – see front matter 0 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2005.01.102

from Eu^{3+} ions weaken compared to those from Tb^{3+} ions. In addition, the luminescence lines of Eu^{3+} ions weaken with decreasing temperature. On the basis of the present results, we discuss the energy transfer process in NaGdF₄: Tb^{3+} , Eu^{3+} excited by the VUV light.

2. Experiment

Fluoride powders of NaF, YF₃, EuF₃, GdF₃ and TbF₃ were used as starting materials for firing. After dried by heating at 500 °C in vacuum for 2 h, the mixture in a carbon crucible was heated up to 750 °C in an Ar gas atmosphere (0.5 atm) for 5 h.

For measurements of luminescence spectra, the samples were excited by an ArF excimer laser (oscillation wavelength: 193 nm, pulse width: 15 ns) operating at a repetition rate of 20 Hz. The energy density on the samples was about \sim 50 μ J/cm² per pulse. The detection was performed by using a grating spectrometer (focal length: 25 cm) equipped with a CCD. The luminescence spectra were corrected by the sensitivity of the detection system. The sample was cooled down to 12 K by a closed-cycle cryogenic refrigerator. Measurements of excitation spectra were carried out with the use of synchrotron orbital radiation at the beam line 1B of UVSOR facility (Institute for Molecular Science, Okazaki, Japan). A 1 m Seya-Namioka type monochromator was used to obtain the monochromatic exciting light. The luminescence from the samples was detected by a photomultiplier tube equipped with a grating monochromator (focal length: 30 cm). The excitation spectra were corrected by the intensity distribution of the exciting light.

3. Results and discussion

On the right-hand side of Fig. 1 (300–750 nm) are shown luminescence spectra of NaGdF₄:Eu³⁺ (1 mol%) and NaGdF₄:Tb³⁺ (1 mol%), Eu³⁺ (1 mol%) excited by an ArF excimer laser (193 nm) measured at 300 K. The spectra have been normalized at the maximum. In the luminescence spectrum of NaGdF₄:Eu³⁺, a number of luminescence lines are recognized. Almost all the luminescence lines are attributed to the f–f transition of Eu³⁺ ions. The most prominent line at 614 nm is assigned to the transition from ⁵D₀ to ⁷F₂ state [3]. On the other hand, the luminescence lines arising from the f–f transition of both Eu³⁺ and Tb³⁺ ions. The luminescence line at 545 nm is attributable to the transition from ⁵D₄ to ⁷F₅ state in Tb³⁺ ions [4].

Spectra on the left-hand side of Fig. 1 (100–300 nm) show excitation spectra monitoring the luminescence lines at 614 nm for the two samples. In both of the excitation spectra, there appear several excitation lines originating from the f–f transition of Gd^{3+} ions in the UV spectral region rang-

Fig. 1. Luminescence spectra (300–750 nm) excited by an ArF excimer laser (193 nm) and excitation spectra (100–300 nm) monitoring the luminescence lines at 614 nm for NaGdF₄:Eu³⁺ (1 mol%) and NaGdF₄:Tb³⁺ (1 mol%), Eu³⁺ (1 mol%) measured at 300 K.

ing from 200 to 300 nm. Specifically, the excitation lines at around 200, 250 and 270 nm are attributed to the transition from ${}^{8}S_{7/2}$ ground state to ${}^{6}G_{J}$, ${}^{6}D_{J}$ and ${}^{6}I_{J}$ state of Gd³⁺, respectively [3]. This indicates that Gd³⁺ ions provide the absorbed energy for Eu³⁺ ions. An excitation band observed at \sim 150 nm has been unsettled in origin, but probably associated with Gd³⁺ ions. By comparing the excitation spectra in the VUV spectral region, we notice that additional excitation bands appear in the spectral range of 160-210 nm in $NaGdF_4:Tb^{3+}$, Eu^{3+} . One can ascribe these excitation bands to the f-d transition of Tb^{3+} ions [2]. Accordingly, it is obvious that the energy transfer from Tb^{3+} to Eu^{3+} ions takes place in NaGdF₄: Tb^{3+} , Eu³⁺ at room temperature. It should be pointed out that most of the VUV light generated by Xe₂ discharge is absorbed by the Tb³⁺ ions, because the absorption due to the dipole-allowed f-d transition of Tb³⁺ is strong [5].

In order to clarify the role of Gd^{3+} ions in the energy transfer from Tb^{3+} to Eu^{3+} ions, we have examined luminescence spectra by replacing Gd^{3+} ions with Y^{3+} ions at room temperature. The results of $NaY_{1-x}Gd_xF_4$: Tb^{3+} , Eu^{3+} ($0 \le x \le 1$) are shown in Fig. 2. Each spectrum has been normalized at the maximum. For the Gd^{3+} concentration x = 1-0.75, the luminescence spectrum remains almost unchanged. As *x* decreases from 0.5 to 0, the relative intensity of luminescence lines of Tb^{3+} ions (left-hand side arrow) to those of Eu^{3+} ions (right-hand side one) gradually increases. From this result, the energy transfer rate from Tb^{3+} to Eu^{3+} ions reduces by replacing Gd^{3+} ions with Y^{3+} ions.

Fig. 2. Luminescence spectra of NaY_{1-x}Gd_xF₄:Tb³⁺, Eu³⁺ ($0 \le x \le 1$) excited by an ArF excimer laser at 300 K.

Fig. 3. Luminescence spectra (500–650 nm) of NaGdF₄:Tb³⁺, Eu³⁺ excited by an ArF excimer laser, measured at various temperatures (12–300 K).

Fig. 3 demonstrates luminescence spectra of $NaGdF_4:Tb^{3+}$, Eu^{3+} measured at various temperatures (12-300 K) in the visible spectral region (500-650 nm). As is shown in Fig. 3, the energy transfer rate from Tb^{3+} to Eu^{3+} ions is also dependent on temperature. As the temperature decreases, the luminescence from Eu^{3+} ions gradually weakens, but remains almost unchanged below ~ 150 K. On the other hand, the luminescence from Tb³⁺ ions strengthens with decreasing temperature at ~ 150 K. The intensities of luminescence lines of Tb³⁺ ions become stronger than those of Eu³⁺ ions at lower temperatures. The result shows that the energy transfer rate from Tb^{3+} to Eu^{3+} ions becomes small at low temperatures. This suggests that the energy transfer involves thermal activation process.

On the basis of the energy transfer process reported for Gd compounds so far, we can interpret the energy transfer process in NaGdF₄:Tb³⁺, Eu³⁺. It has been reported that Ce³⁺ ions in NaGdF₄:Ce³⁺, Eu³⁺ absorb the UV light generated from Hg discharge (254 nm) due to the dipole-allowed f–d transition, and the absorbed energy is efficiently transferred to the Eu³⁺ ions, yielding the luminescence of the f–f transition by the medium of Gd³⁺ ions [6]. Recently, we have found that Pr³⁺ ions in NaGdF₄:Pr³⁺, Eu³⁺ absorb the VUV light (~172 nm) due to the f–d transition, and the absorbed energy is transferred to Eu³⁺ ions through the three-step energy transfer process: (1) from Pr³⁺ to Gd³⁺ ions; (2) from Gd³⁺ to Gd³⁺ ions; and (3) from Gd³⁺ to Eu³⁺ ions [7].

After Tb³⁺ ions in NaGdF₄:Tb³⁺, Eu³⁺ absorb the VUV light, some of the excited Tb³⁺ ions relax from 4f⁷5d¹ states to 4f⁸ states accompanied by the phonon emission, and give rise to the luminescence due to the f–f transition. Other Tb³⁺ ions supply the absorbed energy to the neighboring Gd³⁺ ions. Based on the energy overlap, the Tb³⁺ ions in the 4f⁷5d¹ state would give the energy to the ⁶D_J and/or ⁶I_J state in the Gd³⁺ ions. The excited Gd³⁺ ions relax to the lowest ⁶P_J excited state. After the relaxation, the excitation energy migration between the Gd³⁺ ions takes place [8,9].

According to [10], the energy migration is due to the exchange interaction between the Gd³⁺ ions, so that the migration rate is strongly dependent on the distance between the Gd³⁺ ions, namely the concentration of Gd³⁺ ions. It was also reported in [10] that there are trap states resulting from Gd^{3+} ions on some crystallographic sites in hexagonal NaGdF₄. Those trap states hamper the energy migration at low temperatures. The activation energy is smaller than the thermal energy at room temperature, so that the trap states are emptied and do not hamper the energy transfer at room temperature [9]. Owing to the energy migration through Gd^{3+} ions, the excitation energy can reach both Eu³⁺ and Tb³⁺ ions, yielding the luminescence of the f-f transition. Whether or not the quantum cutting process via the energy transfer from Tb³⁺ to Eu³⁺ occurs was unclear in the present experiment. The investigation is now in progress, and the results will be reported in the near future.

In conclusion, the efficient energy transfer from Tb^{3+} to Eu^{3+} through Gd^{3+} takes place in NaGdF₄: Tb^{3+} , Eu^{3+} excited

by the VUV light generated from Xe_2 discharge at room temperature. As a result of the energy transfer, $NaGdF_4:Tb^{3+}$, Eu^{3+} shows reddish white luminescence which consists of the luminescence lines arising from the f–f transition of Tb^{3+} and Eu^{3+} .

Acknowledgements

The authors thank Dr. T. Kawai of Osaka Women's University and Dr. H. Kondo of Ehime University for supporting the experiments. This study was partly supported by the Joint Studies Program of the Institute for Molecular Science and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (No. 15540322).

References

- [1] R.T. Wegh, H. Donker, K.D. Oskam, A. Meijerink, Science 283 (1999) 663.
- [2] R.T. Wegh, A. Meijerink, Phys. Rev. B 60 (1999) 10820.
- [3] R.T. Wegh, H. Donker, K.D. Oskam, A. Meijerink, J. Lumin. 82 (1999) 93.
- [4] R.T. Wegh, E.V.D. van Loef, A. Meijerink, J. Lumin. 90 (2000) 111.
- [5] R.T. Wegh, A. Meijerink, R.-J. Lamminmäki, J. Hölsä, J. Lumin. 87–89 (2000) 1002.
- [6] H.S. Kiliaan, J.F.A.K. Kotte, G. Blasse, Chem. Phys. Lett. 133 (1987) 425.
- [7] T. Hirai, N. Ohno, S. Hashimoto, S. Sakuragi, Abstracts of the 203rd Meeting of the Electrochemical Society 2003 (No. 2461).
- [8] R. Mahiou, A. Arbus, J.C. Cousseins, M.T. Fournier, J. Less Common Met. 136 (1987) 9.
- [9] H. Kondo, T. Hirai, S. Hashimoto, J. Lumin. 102-103 (2003) 727.
- [10] H.S. Kiliaan, J.F.A.K. Kotte, G. Blasse, J. Electrochem. Soc. 134 (1987) 2359.